This Is A Custom Widget

This Sliding Bar can be switched on or off in theme options, and can take any widget you throw at it or even fill it with your custom HTML Code. Its perfect for grabbing the attention of your viewers. Choose between 1, 2, 3 or 4 columns, set the background color, widget divider color, activate transparency, a top border or fully disable it on desktop and mobile.

This Is A Custom Widget

This Sliding Bar can be switched on or off in theme options, and can take any widget you throw at it or even fill it with your custom HTML Code. Its perfect for grabbing the attention of your viewers. Choose between 1, 2, 3 or 4 columns, set the background color, widget divider color, activate transparency, a top border or fully disable it on desktop and mobile.

Bore-Grinding

/Tag:Bore-Grinding

Rough Grinding Carbide

By | September 16th, 2016|Categories: Diamond Grinding Wheels, Jig Grinding, Jig Grinding Mandrels|Tags: , , |

Last week was a big week for us here at DPM.com, we developed a new tool for Rough Grinding Carbide. After extensive research and testing, we found that using a crystal with high friability, in a tough bond that was heat tolerant allowed us to retain “sharp” crystal. Many times when mandrel grinding Carbide, there is an issue with temperature due to the closed-off nature of the hole. Limiting air or hindering chip evacuation. This inherent issue with mandrel or jig work is limited workspace. This limited work space means the tool must remove the maximum amount of material without creating much heat. Using a crystal that is as large as possible, and still able to provide the desired finish is optimal. This can take a considerable amount of knowledge or experience working with formulation and mandrel manufacturing.

Carbide Grinding With Diamond Mandrels

Working with Carbide can be a fickle creature. Something about the structure that is carbide that delicately plays with strength to tension to stress. Here at DPM.com, we test all our mandrels and various crystal formulations internally on a variety of different materials. Mainly Carbide though. After extensive testing, we have released the SMKP Line of Abrasives into our portfolio. This has given us an advantage on the market, with tools that are showing extended life of up to 75%. This is all due to correct crystal sourcing for the application. Reduced cycle times, and extended tool lives provides our customers with a low cost per unit production providing a lucrative production environment. This is critical to long term survival in a saturated brutal market that is Carbide Grinding.

New Nickel Flashing Procedure

Over the last three months we have focused our efforts internally at our tanks to be able to provide a superior flashing that will hold under the harshest of environments. We performed over 3,300 different combinations and formulations until we were happy with the results. Now these tests were under some extreme situations, but we want our tooling to hold up to your worst environment. That’s why we test tooling at speeds and feeds that are not typical in the field. With spindles running at over 50,000RPM, we are truly punishing these tools, and we want them to fail when we are testing. This gives us the opportunity to optimize that tool, preventing the same issue from happening in the future, as well as, improving other aspects of the tools performance.

In-Feed and Diameter

By | September 26th, 2016|Categories: Diamond Grinding Wheels, ID Grinding, Jig Grinding, Jig Grinding Mandrels|Tags: , , |

Over the last 80 years that grinding has become a very documented and researched manufacturing method, it has grown quite popularly with ID or Boring Grinding. Using a relationship between spindle speed, tool diameter, and crystal size/chip depth. Typical jog grinding happens with a spindle speed around 10,000-50,000 RPM; however, with technology advancements, we are seeing spindle speeds capable of 120,000+ RPMs. This has allowed jig grinding to gain some ground, being able to run your tools at much higher spindle rpms and SFPM, allows for higher in-feed rates, reducing overall cycle time for the operation.

When running a DPM Mandrel, we recommend a SFPM of around 7,500, with in-feeds around 3-8″ Per Minute. Depth of cut, somewhere in the 0.100″ range depending on the P-Line or Surface contact on the tool. We recommend per 0.25″ of contact, reduce infeed by 0.010″ This is due to tool pressure and deflection. If the user has a very stiff shank and large crystal sizes, they can run in-feed and depth outside this range. Our Jig Grinding mandrels are capable of sizes from .0080” to 20.000”. Our mandrel size is limited by our tanks. We do have partners that can plate over a 20″ piece.

Now, these speeds and feeds that were listed above are general in-feeds for HSS with a 40-60 Grit Mesh. Running Diamond on Carbide or PCD is a different story. We recommend running the same Surface Foot Per Minute, but reduce your in-feed rates by about 40%, this will help the crystal load and heat build up from the Carbide or PCD. They tend to make a better or easier chip to deal with, but also require quite a bit of force to cut resulting in high temperatures.

Lets talk oscillation, we recommend a cross-feed or oscillation rate of 0.010″ Per 0.50″ or P-line contact. This will help keep your hole more concentric and hold a tighter tolerance to your desired blueprints than running a straight bore or wipe/drag feed method.

Please comment or send us any questions you may have. We have been extremely lucky to be involved with the people we currently deal with. Thank you very much for reading.